

Справочные данные и знания в управлении производством

Андрей Андриченко, Никита Щербаков

Управление справочными данными — одна из ключевых задач в обеспечении работы современных информационных систем. В полной мере это относится и к автоматизированному проектированию. С выходом предприятий на новый уровень управления жизненным циклом продукта, где САПР начинают конкурировать за обладание источниками нормативно-справочной информации (НСИ) с другими корпоративными системами, комплексное решение данной задачи становится особенно актуальным. Статья посвящена принципам решения проблем, связанных с ведением НСИ, и перспективам развития данного направления на современных предприятиях.

Проблема: раздробленность НСИ

Информация — это стратегический актив компании. Справочники и классификаторы средств производства, материалов, товаров, работ, а также система правил взаимодействия этих объектов — основа для принятия решений в управлении, планировании и производстве.

Автоматизируя отдельные направления своей деятельности, многие предприятия параллельно эксплуатируют как глобальные (ERP, PLM), так и нишевые (CAD, CAM, CAE и т.д.) системы от различных поставщиков. Каждое из этих приложений использует собственную модель данных, свой набор справочников и классификаторов.

Такое многообразие порождает следующие трудности:

- необходимость сопровождения и администрирования одновременно нескольких справочных баз данных различных приложений и, как следствие, повышение стоимости владения ПО за счет дублирования однотипных работ:
- дублирование одной и той же информации в различных средах и возникающие из-за этого противоречия, избыточность и несогласованность в справочных данных;
- большая трудоемкость и нетехнологичность операций син-

- хронизации справочных данных между взаимодействующими приложениями:
- отсутствие единого централизованного хранилища справочных данных, обеспечивающего отраслевые и корпоративные стандарты именования, атрибутирования и классификации объектов;
- отсутствие целостного взгляда на корпоративную информацию, отражающего все аспекты бизнеса предприятия.

Таким образом, раздробленность справочных данных представляет собой серьезную проблему для многих предприятий. И острота этой проблемы будет только возрастать с ростом степени их автоматизации и вовлеченности в глобальный информационный обмен.

Решение: единые справочники и знания

Несколько лет назад появился новый класс систем, позволяющих решить перечисленные проблемы. Master Data Management (MDM) — совокупность методологий и инструментов, специально предназначенных для управления НСИ. Данное направление активно развивается и является сегодня одним из самых перспективных в мировой ИТ-индустрии. Объем рынка MDM, по результатам исследований ведущих аналитических агентств, составляет

порядка миллиарда долларов и имеет тенденцию к интенсивному росту

Дальнейшее развитие идей MDM — система интеллектуального управления НСИ, базирующаяся на следующих принципах:

- консолидация НСИ объединение всех справочных данных в единую информационную среду;
- объектная модель данных хранение справочных данных и обмен ими в виде информационных объектов;
- онтологическое представление НСИ — использование семантических моделей предметных областей для хранения объектов НСИ:
- контекстность видения НСИ представление объектов исключительно в связи с определенной точкой зрения пользователя на их состав и взаимосвязи;
- ориентированность на знания перенос знаний (правил поведения и взаимосвязей объектов) из бизнес-логики приложений в объектную базу НСИ.

Остановимся на каждом из сформулированных принципов построения интеллектуальной MDM-системы подробнее.

Консолидация НСИ

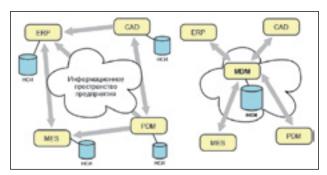
Проблемы, непосредственно связанные с дублированием и несогласованностью справочных данных, решаются путем создания единого пространства справочных

Андрей Андриченко

Канд. техн. наук, руководитель отдела разработки комплекса ТПП.

Никита Щербаков

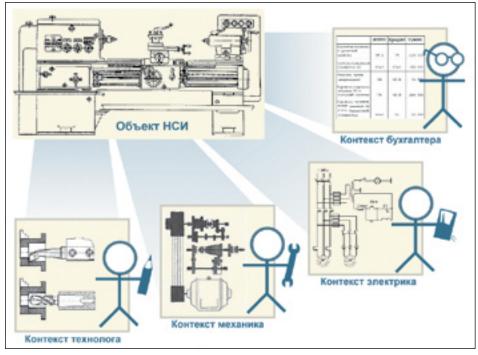
Системный аналитик компании АСКОН, Москва.



данных, одинаково доступного всем прикладным системам.

Объектная модель

Объектно-ориентированная модель данных — фундамент интеллектуальной МDМ-системы. В отличие от реляционной модели, она позволяет хранить информацию об объектах вместе с правилами их взаимодействия. Система является поставщиком объектов НСИ для внешних приложений. Они могут получать полную информацию об объекте из MDM-системы, указав только его уникальный идентификатор и имя класса.


Применение объектной модели избавляет пользователя, ответственного за ведение НСИ, от необходимости разбираться в базе данных на физическом уровне. Всю работу по организации структуры данных берет на себя конфигуратор модели, позволяющий

Единый центр справочных данных

Контекстное представление объекта

пользователю оперировать общедоступными понятиями: объект, класс, атрибут, метод.

Объектная платформа, созданная для системы НСИ, может применяться в качестве интеграционной среды, на которую опираются другие информационные ресурсы предприятия. Более того, на ее основе могут быть построены практически любые прикладные системы.

Онтология

Эксперты строят онтологии, или семантические модели, своих предметных областей — описывают, «что из чего состоит и каким бывает» в данной области и как одно может быть связано с другим.

Классификация объектов в интеллектуальной MDM-системе служит основанием для упорядочения правил, определяющих их поведение. Так, правило расчета массы детали на основе ее геометрических размеров и плотности материала принадлежит объекту «Деталь», а знание того, что с помощью спирального сверла можно получить круглое отверстие, лежит на пересечении объектов «Сверло» и «Отверстие».

Все частные онтологии сшиваются в единую универсальную онтологию, составляющую единое

пространство терминов, понятий и объектов. Тем самым обеспечивается фиксация всех возможных точек зрения на структуру, состав и возможности взаимодействия объектов. Появляется возможность многократно использовать справочную информацию из единого источника в различных прикладных областях.

Контексты

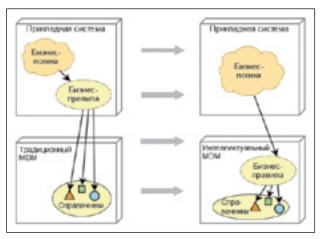
Контекстность — зависимость содержания и объема доступных справочных данных от цели их применения. Это свойство отражает тот факт, что знания всегда связаны с определенной областью деятельности, видом задач, которые мы хотим решить. Связи, заданные в одном контексте, необязательно имеют место в других контекстах. Контекст естественным образом соответствует какой-либо функции информационного объекта.

Контексты, реализованные в системе управления НСИ, позволяют различным группам пользователей по-разному видеть объекты на определенных этапах их жизненного цикла. Например, контекстная точка зрения на металлорежущий станок позволит инженерутехнологу видеть в структуре этого объекта механизмы перемещения заготовки и режущего инструмен-

та, а инженеру-механику — узлы и детали, подлежащие профилактическому осмотру.

Ориентированность на знания

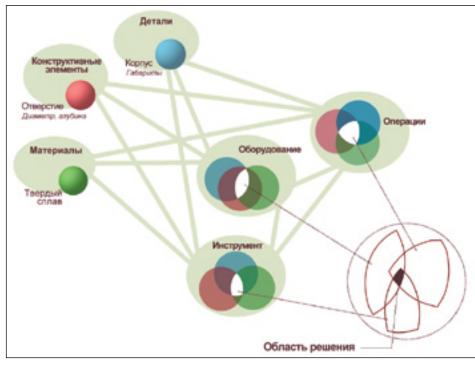
Ключевая особенность единой системы — возможность оперировать семантическими связями между объектами, то есть знаниями. Правила принятия решений, традиционно находившиеся в алгоритмах приложений, переносятся на уровень моделей данных. Таким образом, знания, во-первых, становятся доступными другим приложениям, а во-вторых, за счет


переноса на более низкий уровень повышается эффективность их обработки.

При этом в качестве критериев отбора объектов можно задавать их атрибуты и взаимосвязи с другими объектами. Например, при поиске сверла в классификаторе режущих инструментов можно указать не только его длину и диаметр, но и материал обрабатываемой детали, схему обработки и металлорежущий станок. МDМ-система подберет все сверла соответствующего размера, совместимые с заданными объектами.

Таким образом, система управления НСИ — это совокупность методик ведения и поддержки общих справочников, а также набор технических решений, формирующих единое информационное пространство предприятия. Только объединив разрозненные данные и знания в универсальную модель, можно создать единую интеллектуальную информационную платформу для всех приложений, работающих на предприятии.

Сценарий использования интеллектуальных справочников


Итак, алгоритм работы интеллектуальной MDM-системы, построенной по изложенным принципам, выглядит следующим образом. В систему собираются справочные данные от всех приложений. При этом в одном объекте смешиваются атрибуты, представляющие интерес для различных групп пользователей. Контекстность видения объекта помогает рацио-

Перенос знаний из алгоритмов приложений в хранилище НСИ

Трехступенчатое сужение области поиска решения в массиве НСИ

нально использовать его в частных задачах. А сеть правил взаимодействия, охватывающая все объекты, обеспечивает автоматизацию принятия решений везде, где это возможно, без обращения к бизнеслогике прикладных систем.

Проиллюстрируем использование семантических возможностей MDM-системы на примере задачи проектирования технологического процесса.

Допустим, перед технологом поставлена задача разработать план изготовления отверстия в корпусной детали из твердого сплава. Исходными данными являются: тип, материал и габаритные размеры детали, а также тип, точность, чистота и габаритные размеры обрабатываемой поверхности.

Необходимо определить допустимые методы обработки отверстия, подобрать режущий инструмент и оборудование. Предполагается, что в систему уже внесены все необходимые знания, то есть наполнены все справочники и установлены все семантические взаимосвязи между элементами справочников.

Сценарий решения задачи с помощью интеллектуальной MDMсистемы таков:

 Прежде всего определяется контекст работы. В нашем

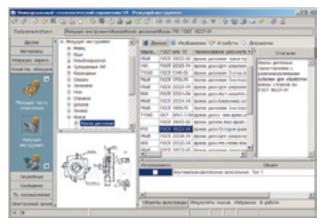
- случае это механическая обработка. Интеллектуальная MDM-система будет рассматривать только те аспекты НСИ, которые имеют значение для данного вида производства.
- МDМ-система получает исходные данные об объектах задачи — отверстии, детали и материале.
- Используя заложенные в нее знания о совместимости деталей, отверстий и материалов с другими объектами НСИ, система определяет, какие методы обработки (операции), оборудование и инструмент подходят для работы с деталями указанных габаритов, для изготовления отверстий нужного размера и для обработки заданного материала.
- Сопоставляя полученные выборки оборудования, соответствующего детали, отверстию и материалу, система формирует список оборудования, удовлетворяющего одновременно всем трем условиям. То же проделывается для инструмента и операций.

В результате получаются три достаточно ограниченных списка: оборудования, инструмента и операций; каждый из них

- в отдельности отвечает всем исходным данным.
- Учитывая знания о совместимости операций, оборудования и инструмента друг с другом, система набирает из получившихся списков комбинации объектов, удовлетворяющих этим связям.
- Система выдает список возможных вариантов решения задачи технологу.

Приведенный пример показывает, как наличие семантических связей в базе НСИ позволяет перенести в нее знания из алгоритмов прикладных систем и за счет этого повысить эффективность поиска

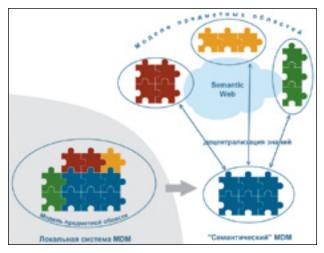
справочных данных и автоматизировать принятие технологических решений.


НСИ в машиностроении сегодня

Коллективом разработчиков АСКОН накоплен многолетний уникальный опыт по созданию и развитию системы управления НСИ для машиностроения.

АСКОН предлагает своим клиентам комплекс решений для автоматизации конструкторскотехнологической подготовки производства, в который входят система трехмерного проектирования КОМПАС-3D, система управления инженерными данными ЛОЦМАН:РLМ и САПР технологических процессов ВЕРТИКАЛЬ. За управление НСИ в комплексе отвечает набор специальных компонентов, один из которых — Универсальный технологический справочник.

История развития справочника насчитывает более пяти лет, за это время он прошел эволюцию от простого иерархического классификатора технологических данных до полноценной объектно-реляционной системы управления произвольной НСИ. Вышли в свет четыре коммерческие версии продукта, несколько тысяч его копий работают в реальных производственных условиях. Среди наших крупнейших заказчиков — ОАО «ПО «Севмаш», ОАО «Российская самолетостроительная корпорация «МиГ», ЗАО «Вагонмаш» и многие другие.


Система реализует объектную модель данных, которая является логической надстройкой над

Универсальный технологический справочник

ОПЫТ ИСПОЛЬЗОВАНИЯ ТЕХНОЛОГИЙ

Глобальное разделение труда в создании НСИ

реляционной СУБД (в настоящее время поддерживаются Microsoft SQL Server, Oracle, InterBase).

Ключевые особенности системы:

- развитые функции поиска в массиве справочной информации;
- ведение неограниченного количества многоуровневых справочников;
- поставка клиентским приложениям данных в виде объектов;
- механизм установления взаимосвязей между объектами справочников;
- коллективная работа с документами.
- импорт, экспорт данных в различные форматы, включая XMI.
- развитый API-функционал и многое другое.

С системой поставляются обширные базы данных по машиностроительному оборудованию, станкам, инструментам и материалам. Предусмотрены два варианта поставки справочника: в качестве самостоятельного приложения — интеллектуального хранилища данных с функциями информационно-поисковой системы, и в качестве поставщика справочных данных внешним приложениям: САПР, PDM, ERP и др.

В отличие от традиционных MDM-систем, предназначенных в первую очередь для автоматизации бизнес-процессов продаж, поставок и маркетинга, наша система ориентирована на производство как таковое и позволяет учесть все его аспекты: проектирование, управление и принятие решений.

Взгляд в будущее: глобализация информации

Интеллектуальная MDM-система — это в первую очередь продвинутые возможности по работе с практическим смыслом — семантикой хранимой информации.

При построении семантической модели предметной области в рамках локальной MDM-системы приходится оперировать терминами и определениями, относящимися к различным областям знаний. С развитием Semantic Web — семантического Интернета — многочисленные модели предметных областей будут созданы в удаленных центрах компетенции и распространены в Глобальной сети. Предприятия смогут получать информацию из первых рук, обращаясь напрямую к самым актуальным базам инструмента, оборудования, материалов на сайтах их производителей.

Семантика уже активно используется в интернет-индустрии (имеется комплекс отраслевых стандартов, таких как «Язык Webонтологий OWL»), нефтегазовой промышленности (стандарт ISO 15926 «Интеграция данных жизненного цикла для непрерывных производств»), здравоохранении — областях, где знания составляют основное содержание или стоят особенно дорого.

Внедрение MDM-системы в сочетании с семантическими технологиями откроет предприятиям перспективу свободного участия в глобальном обмене знаниями, обещающем стать стандартом уже в ближайшее десятилетие.